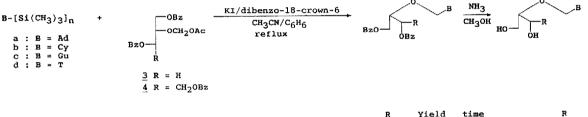

EFFICIENT SYNTHESIS OF 1,2-seco AND 1,2-seco 2-nor PYRIMIDINE AND PURINE NUCLEOSIDES.

Muhammad AZYMAH, Claude CHAVIS, Marc LUCAS and Jean-Louis IMBACH*

Laboratoire de Chimie Bio-Organique, associé au CNRS, Université de Montpellier II, 34060 Montpellier-Cédex 1, France.

Unprotected silylated purines and pyrimidines (adenine, guanine, cytosine, thymine) reacted with acetoxymethyl ether (acyclic sugar analogues) under solid PTC conditions, using KI and dibenzo-18-crown-6 in benzene-acetonitrile (1:1, v/v) to give regiospecifically the corresponding N-9 purine and N-1 pyrimidine acyclic nucleosides in fairly good yields.

Since the discovery of Acyclovir <u>1</u> [9-(2-hydroxyethoxy)-methyl]guanine as a selective antiherpes agent¹, attention has focused to the synthesis and antiviral evaluation of an increasing number of acyclic nucleoside analogues^{2,3}; one of the most potent compounds synthesized to date is DHPG <u>2</u> ([9-(1,3-dihydroxy-2-propoxy)methyl] guanine⁴.



Altered nucleosides bearing acyclic variations in the sugar moiety were synthesized either from natural nucleosides⁵ (*i.e.* 2,3-*seco* nucleosides) or by reaction between the appropriate pseudo-sugar moiety and the purine or pyrimidine ring. To date, these latter procedures applied to the synthesis of acyclic nucleosides of the general formula R-O-CH₂-B (B=N-9 purinyl or N-1 pyrimidinyl) started from halomethyl ethers R-O-CH₂X (X = Br, Cl) which were reacted with silylated nucleobases with or without^{6,7} catalyst (Friedel-Crafts⁸, p.toluene sulfonic acid⁴, triethylamine^{9,10}, mercuric cyanide^{11,12}, nBu₄NI¹²⁻¹⁶, ZnI₂¹⁷, CsI¹⁸, (CH₃)₃SiI^{19,20}, TDA²¹). Whenever it

6165

was possible, condensation occurred between the sodium salt of the base and halomethyl ether²². Finally, transpurination reaction had been applied to the synthesis of acyclonucleosides²³.

Most of these reactions described in the literature exhibit low regioselectivity and their yields are generally unsatisfactory. As we are interested in the synthesis of chiral acyclic nucleosides, we devised a simple and general method which affords high yields of the natural N-9 purine and N-1 pyrimidine derivatives as exemplified in scheme 1. In this way the readily available protected acetoxymethyl ether of glycerol 3^{10} and homochiral (25,35) L-threitol 4^{24} were reacted with silylated nucleobases (a,b,c,d) (1 mmol) in refluxing acetonitrile-benzene mixture (1:1, v/v, 10 ml) under phase transfer conditions using dibenzo-18-crown-6 (0.2 mmol) and potassium iodide (0.8 mmol). After filtration, the solution was evaporated under reduced pressure. The residue was subjected to a short column chromatography in order to eliminate the coronand from the desired compounds 5 and 6. As reported in scheme 1, N-9 purinyl and N-1 pyrimidinyl acyclic nucleosides were obtained as the sole products in fairly good yields. Removal of the benzoyl groups by methanolic ammonia gave the compounds 7 and 8 in quantitative yields.

	R	(%) (%)	time (days)		R	
5a	н	76	5	<u>7a</u>	н	
5b	н	81	2	<u>7b</u>	н	
<u>5c</u>	н	80	1	<u>7c</u>	н	
<u>5d</u>	н	80	2	<u>7d</u>	н	
<u>6a</u>	CH ₂ OB2	78	4	<u>8a</u>	сн2он	
<u>6b</u>	CH20B2	87	5	<u>8b</u>	сн ₂ он	
6c	CH2OB	: 88	4	<u>8c</u>	сн ₂ он	
6d	сн ₂ ов2		3	8đ	сн ₂ он	

Scheme 1

The unprotected acyclic nucleosides $\underline{7}$ derived from glycerol were fully characterised^{25,31} and their analytical data were in accordance with the literature.

Among the 1,3S,4-trihydroxy-2S-butoxymethyl nucleosides <u>8a-8d</u>, two (*i.e.* <u>8a</u> and <u>8c</u>) were prepared^{14,28,29} in an overall yield not exceeding 30%. It is worth mentioning that in the case of the guanine derivative <u>8c</u>, an equal amount of N-9 and N-7 isomers were obtained^{29,14} and had to be separated. Analytical data^{30,31} for all compounds **6a-6d** and **8a-8d** reported in this communication were consistent with the structures given.

This process constitutes a simple and highly useful methodology for the regiospecific synthesis of acyclic nucleosides. Moreover, it has three advantages: - The exocyclic amino groups of nucleobases (Ad, Cy, Gu) need no further protection. - An acetoxymethyl ether can be used directly avoiding the preparation of the corresponding halomethyl ether. - High coupling yields are obtained. This approach opens the way to an easy regiospecific synthesis of various other series of acyclonucleosides.

REFERENCES AND FOOTNOTES

- H.J. Schaeffer, L. Beauchamp, P. de Miranda, G. ELion, D-G. Bauer and P. Collins, Nature (London)., 1978, 272, 583.
- 2. R.J. Remy and J.A. Secrist II, Nucleosides, Nucleotides, 1985, 4, 411.
- 3. C.K. Chu and S.J. Cutler, J. Heterocycl. Chem., 1986, 23, 289.
- J.C. Martin, C.A. Dvorak, D.F. Smee, T.R. Matthews and J.P.H. Verheyden, J. Med. Chem., 1983, 26, 759.
- 5. G. Beaton, A.S. Jones and R.T. Walker Tetrahedron, 1988, 44, 6419.
- S.V. Kotchetkova, A.A. Khorlin, I.P. Smirnov, I.L. Tschaveleva, T.L. Tsilevich, B.R. Gottikii and V.L. Florentiev *Bioorg. Khim.*, 1989, 15, 133.
- 7. W.T. Ashton, L.F. Canning, G.F. Reynolds, R.C. Tolmann, J.D. Karkas, R. Liou, M.E.M. Davies, C.M. Dewitt, H.C. Perry and K. Field, J. Med. Chem., 1985, 28, 916.
- 8. A. Rosowsky,, S.H. Kim and M. Wick, J. Med. Chem., 1981, 24, 1177.
- 9. K.K. Ogilvie and M.F. Gillen, Tetrahedron Lett., 1980, 21, 327.
- L.M. Beauchamp, L. Sterling, J.E. Kelsey, K.K. Biron, P. Collins, J. Selway, J.C. Lin and H.J. Schaeffer, J. Med. Chem., 1988, 31, 144.
- 11. K.K. Ogilvie, R.G. Hamilton, M.F. Gillen and G.K. Radatus, Can. J. Chem., 1984, 62, 16.
- P. Vemishetti, E. Abushanab, R.W. Leiby and R.P. Panzica, Nucleosides, Nucleotides, 1989, 8, 201.
- T. Ogawa, H. Takaku and N. Yamamoto, Nucleosides, Nucleotides, 1989, <u>8</u>, 499.
- 14. G.H. Hakimelahi, M. Zarrineshad, A.A. Jarrahpoor and H. Shargui, Helv. Chim. Acta, 1987, 70, 219.
- 15. E. Abushanab and M.P. Sarma, J. Med. Chem., 1989, 32, 76.
- 16. H.B. Lazrek, M.L. Taha, J.L. Barascut and J.L. Imbach, Nucleosides, Nucleotides, 1987, 6, 379.
- 17. Y.H. Kim and J.Y. Kim, Heterocycles, 1988, 27, 71.
- 18. Y.H. Kim, J.Y. Kim and C.H. Lee, Chem. Lett., 1988, 1045.
- 19. A. Matsuda, Y. Kurasawa and K.A. Watanabe, Synthesis, 1981, 748.

- 20. Z. Tocik, R.A. Earl and J. Benarek, Nucleic Acids Res., 1980, 8, 4755.
- 21. H. Rosemeyer and F. Seela, Helv. Chim. Acta, 1988, 71, 1573.
- 22. J.S. Pudlo, N.K. Saxena, M.R. Nassiri, S.R. Turk, J.C. Drach and L.B. Townsend, J. Med. Chem., 1988, <u>31</u>, 2086.
- 23. J. Boryski and B. Golankiewicz, Nucleosides, Nucleotides, 1989, 8, 529.
- 24. This compound and its enantiomer were easily synthesized in five steps from L and D-tartaric acid dimethyl esters respectively. Their synthesis will be published in the forthcoming full paper.
- 25. <u>7a</u>: mp 182-183° (lit⁹ mp 184-186°) λ_{max} (EtOH) 260; <u>7b</u>: mp 141-142° (lit²⁵ mp 141-142°) λ_{max} (EtOH) 269; <u>7c</u>: mp > 300°dec. (lit⁴, 27 mp > 285°dec.) λ_{max} (EtOH)255; <u>7d</u>: mp 155-156° (lit⁹ mp 155-156°) λ_{max} (EtOH) 264.
- 26. J.C. Martin, G.A. Jeffrey, D.P. Mc Gee, M.A. Tippie, D.F. Smee, T.R. Matthews and J.R. Verheyden, J. Med. Chem., 1985, 28, 358.
- 27. K.K. Ogilvie, U.O. Cheriyan, B.K. Radatus, K.O. Smith, K.S. Galloway and W.L. Kennel, Can. J. Chem., 1982, 60, 3005.
- 28. M. MacCoss, R.L. Tolman, W.T. Ashton, A.F. Wagner, J. Hannah, A.K. Field, J.D. Karkas and J.I. Germershausen, *Chemica Scripta*, 1986, <u>26</u>, 113.
- 29. M. MacCoss, A. Chen and R.L. Tolman, Tetrahedron Lett., 1985, 26, 4287.
- 30. ¹H-NMR (300 MHz, CDCl₃) ppm from TMS: <u>6a</u>: 8.2 (s,H₈), 7.36-7.93 (m,H₂, aromatics), 6.72 (br s, NH₂), 5.80 (ABq, NCH₂O), 5.64 (q,H₃,), 4.46-4.69 (m, H₄, 4", H₁, 1", H₂,). <u>6b</u>: 7.19-7.96 (m, NH₂, H₆, aromatics), 5.74 (d, H₅, J= 7.35Hz), 5.67 (m, H₃,), 5.41 (d, NCHO, J=10.58Hz), 5.19 (d, NCHO), 4.41-4.65 (m, H₄, 4", H₁, 1", H₂,). <u>6c</u>: (DMSO-d₆): 10.84 (s, NH), 8.17 (s, H₈), 7.45-7.88 (m, aromatics), 6.22 (s, NH₂), 5.80 (s, NCH₂O), 5.64 (m, H₃,), 4.39-4.67 (m, H₄, 4", H₁, 1", H₂,). <u>6d</u>: 7.39-8.13 (m, NH, aromatics), 7.03 (d, H₆, J=1.28Hz), 5.72 (q, H₃,), 5.43 (d, NCHO, J=10.91Hz), 5.20 (d, NCHO), 4.53-4.76 (m, H₄, 4", H₁, 1", H₂, 1), 1.67 (d, CH₃, J=1.28Hz).
- 31. <u>8a</u>: mp 200° (lit¹⁴ mp 205°) λ_{max} (EtOH) 260; <u>8b</u>: foam, λ_{max} (EtOH) 269; <u>8c</u>: mp 295°dec. (lit²⁹ no data) λ_{max} (EtOH) 253; <u>8d</u>: mp 112-113° λ_{max} (EtOH) 264.

(Received in France 27 July 1989)